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THE ANALYSIS OF NONLINEAR DYNAMIC BEHAVIOR (INCLUDING SNAP-THROUGH)

OF POSTBUCKLED PLATES BY SIMPLE ANALYTICAL SOLUTION

C. F. Ng

SUMMARY

Static postbuckling and nonlinear dynamic analyses of plates are usually
accomplished by multimode analyses, although the methods are usually com-
plicated and do not give straightforward understanding of the nonlinear
behavior. Assuming single-mode transverse displacement, a simple formula is
derived in this paper for the transverse load-displacement relationship of a
plate under in-plane compression. The formula is used to derive a simple
analytical expression for the static postbuckling disélacement and nonlinear
dyﬁamic response; of postbuckled plates under sinusoidal or random excita-
tion. Regions with softening and hardening spring behavior are identified.
Also, the highly nonlinear motion of snap-through and its effects on the over-
all dynamic response can be easily interpreted using the single-mode formula.
The theoretical results are compared with experimental results obtained using
a buckled aluminum panel, using discrete freqﬁency and broadband point excita-
tion. Some important effects of the snap-through motion on the dynamic

response of the postbuckled plates are found.

INTRODUCTION
If a plate is curved, initially or subsequéntly in service due to post~
buckling stresses, the static and dynamic behavior in .the transverse direction
can be highly nonlinear, which may include hardening-spring, softening-spring

or even an instability condition with snap-through motion. Theoretical and



experimental results of large amplitude vibration of postbuckled plates under
sinosoidal excitation were obtained by Yamaki and Chiba,1 however, snap-
through motion was not studied. The characteristics of snap-through motion in
a postbuckled beam under sinusoidal excitation was studied by Tseng and
Dugundgi.2 'A tﬁeérééicaliétudy of the randém response of an initially curved
beam including snap-through mqtion was done by Setde.’ However, a thorough
and straightforward understanding of the nonlinear behavior (particularly
snap-through motion) of general curved plates is difficult to gather from the
previous research results. The present study was conducted to £i11l this gap
using a single-mode analysis method and experimental investigation with

sinusoidal and random excitation forces on a postbuckled plate.

GENERAL FORMULAE FOR RONLINEAR BEHAVIOR OF PLATES
Equation for Equilibrium in the Transverse Direction
For a plate under uniaxial compression with uniform edge displacement,
the relationship between modal displacement and modal force for the buckling

mode is given by (derived in Appendix I):

for static equilibrium: q3 - Rg=p (la)
" a2 . 3

for dynamic motion: q/Q° + 2zq/9 + (q - Rq) = p (1b)

where

q, nondimensional displacement parameter, = Q/Qp
Q, modal displacement

Q> value of Q at R =1

R=2X-1

A = u/ug

u = in-plane edge shortening displacement



ue = value of u at which buckling starts
Q = linear natural circular frequency of the flat configuration

{ = modal damping coefficient

p = nondimensional force parameter, =

L2
. KQp

P = externally applied modal force

K = linear modal stiffness of the flat plate

Qp, us, f1, T, K depend on the assumed shape function of the mode
and other plate parameters. The nondimensional parameters, q, R, P, can be
evaluated after Q> v, K are found by experiments or theories. The
equation (la) involves only nondimensional parameters and 1s therefore
independent of the plate parameters. Using equation (1), the nonlinear static
and dynamic behaviors of a plate can be predicted and they are applicable to
plates of any size, boundary conditions, material properties.

From the plot of P versus q for static condition (fig. 1) regions of
hardening and softening spring behavior are found and there are also regions
of negative stiffness, (e.g., between A and B). Notice that for R = 1,
dynamic motion starting from C will pass through A and B and ends up
at C'.

Static equilibrium positions are found by putting p = 0 in equation (1)
and correspond to the points where the curve crosses the q-axis in figure 1.
Note that for R > 0, there are three equilibrium values of gq; Rl/z,

-rR1/2  and zero. The last value, zero, is an unstable position as the

stiffness is negative. We can rewrite equation (1) as

3 2
T -9 a9=7P (2a)

a/e® + 26/2 + (¢ - ¢2q) = p (2b)



where q, = equilibrium position = Rl/z.

From equation (2a), dp/dq =0 when q = il//§'qo , these are the end

points of region of negative stiffness, e.g., A,B 1in figure 1l

Undamped Free Vibration of Postbuckled Plate
From equation (2b), neglecting damping effect and external force, the

free vibration is obtained as

1

w3 2
;7 q+ (¢ - QOQ) =0 (3

With the substitution H = q g#-, equation 3 can be integrated. For the

initial conditions 6(0) = 0 ana q(o0) = q (qsis the initial position, qg > qo)

at t = 0 the solution can be written
-2,ﬁ(z_2)(z+2_2 2y =
q 7 \4g T 4 g T 1 q,
: 2 2 2
With the expression qg +q -2 q, set equal to 1, the above formula is a

standard linear vibration equation for initial value problem.

The other extreme point of vibration, after the system was released at

dgs Ge, is found by substituting q = 0 in equation (4) to obtain

: 2 2.1/2
q.= -9, or q, (2 q, qs) (5)

When qg < fido, Zqi - qi > 0, Zqi - qi < qg (since q > qo), for the

second solution, O < qe < qo and qz - qz = qz - qz, thus the oscillation

is around 9y from 9, (> qo) to q, (( qo) . The first solution q, = -4,

is on the negative side and thus not reached practically when q < ffho .



When q > V2 9, 2q§ - q: < 0, the second solution gives an imaginary

number, thus the only possible solution is g = —qg, which means that the
oscillation is from qg to =-qg. Also the motion passes through both
equilibrium positions of q, and -q, and q = 0 is the new mean

position, instead of ‘the 6figinal static value, q4.
When q =72 q 2q2 - q2 = 0, thus q_ = 0.
- s o’ o -'s ’ e
44q
From (4), by substituting q = T it can be written as.
2 dq
= 2 2y(2 ., 2 2y11/2
2l(a - 2)a® + o* - 2 )]V

By numerical integration of (6) for the motion between the extreme points,

dt (6)

dg, Qqe, time histories for the free vibration of various amplitudes were
determined for a plate with q, =1 and are shown in figure 2. When

qs <77 , it can be seen that the period of vibration increases as amplitude

increases and the motion is not symmetrical about the static value, 1. When
q= V2 = 1.414, ;he period is theoretically infinity as it
takes infinite time to approach zero. However, when qs> Y7 the periéd will
decrease with increase of amplitude. The displacement also passes through
both equilibrium positions, q, =1 and q, = -1, thus indicating
snap-through motion. The change of mean position is q, (from qo
to 0). Also the rms value is found to be approximately 1 when gqg = 1.5.
Essentially, the postbuckled plate shows softening spring behavior initially
and after snap-through motion accompanied by a change of equilibrium position
it shows a hardening spring behavior.

The free vibration response characteristics reported in reference 2 also
shows that resonance frequency decreases to zero when snap-through motion is

initiated and the frequency increases when the magnitude of snap-through
motion gets larger.



Random Vibration
The method of equivalent linearization can be used to solve the nonlinear
forced vibration equation with damping (from eq. (2b));
1 " C 3 2
;2-2-q+2§q+(q -qoq)=p (7)

The mean square displacement of a buckled plate, <q2> due to white noise
excitation with spectral density Spp can be obtained for small and large

magnitudes, as described in Appendix II.
4
For small excitations @ < 0,45 q, (a = HQSpp/&C, a 1is a nondimensional

force parameter), there is no snap—-through motion and

<@ = (-2 + (&8 +3)'2]/3 , ana T q . (8)

o

4
For @ > 2 q, there is persistent snap-through motion in almost every

cycle of oscillation and

> = [a} + (ag + 12 0)'/)/6, ana T -0 . )

For 0.45 qilg a2 qz, snap—-through motion is intermittent, the mean
position as well as the mean square values are very unsteady. However, the
mean square value can be taken approximately from interpolation between the
two end points—-the point of no snap-through and persistent snap-through
motion.

From equations (8) and (9) the variation of <q2> with the excitation
parameter © for different values of compression parameter A 1is shown in
figure 3. The rate of increase of response with excitakion is highest when

intermittent snap-through motion starts. When persistent snap—through motion



is attained, the response increases much more slowly with increases in
excitation, showing hardening spring behavior.

From figure 3 and equations (8) and (9), the variation of response with
compression parameter for various levels of excitation are plotted as shown in
figure 4. For a given excitation level, the response increases with increases
in compression as it approaches the buckling point. After 1initial post-~
buckling, persistent snap-through occurs and the response continues to
increase until a certain point for which only intermittent snap—-through motion
can be induced. After that point, the response decreases with further
increases in compression. The point of maximum displacement corresponds to
the point for which the excitation is just sufficient for persistent
snap—~through motion. Also, the point of maximum response occurs at
increasingly greater plate curvatures, or larger values of u/u,, as the
excitation level increases. These trends have also been predicted in a

qualitative description by Jacobson.5

EXPERIMENTAL RESULTS

The Test Set-Up

Dynamic tests on several 0.032-inch thick aluminum plates were carried
out using point excitation at the center of the plate by an electromagnetic
shaker. Displacement response was measured by strain gauges. As shown in
figure 5, excitation force was applied in both directions but without applying
any bending constraint on the plate using rounded point screws connected
together to the shaker by a rectangular frame around the specimen. This
direct attachment method of excitation was used instead of the base excitation

of the supporting frame because it can ensure large excitation force in the

low-frequency range (0-20 Hz).



Results for Discrete Frequency Excitation

In a preliminary test, it was found that snap-through motion was most
readily excited by an excitation frequency of 5 Hz. The variation of the
rms value of strain response and reduction of the mean value of strain due to
snap—thrOugh with exéitatibn level are plotted in figure 6. There is a region
of unsteady response as snap-through motion is initiated. When more power is
put into the shaker, the excitation force decreases with increase of
response. This is accompanied by a comparable reduction in the mean value of
the oscillation approximately equal to the original static value, as predicted
in figure 2.

Random Responses

Broadband (0-100 Hz) excitation was used to excite random response
(fig. 7). The low-frequency response (0-20 Hz) dominates the strain response
when snap-through motion is initiated at u/u. = 4.0 (fig. 7) and the
fundamental modal response is not evident. The dominance of low-frequency
regsponse for large amplitudes of post-buckled plates was also reported in
references 5 and 6.

Figure 8 shows the transfer functions (strain/force) of a flat plate with
no buckling load, u/u, = 0, for various excitation levels. The resonance
peak broadens and the overall level decreases as excitation level is
increased.. This is a typical hardening spring behavior.

Figure 9 shows transfer functions of a buckled plate. The resonance peak
also broadens and decreases as did the flat plate, but the response at low
frequency increases as excitation level 1s increased. - Increases in the low-
frequency response are due to the onset of snap-through motion for which the
natural frequency is very low (fig. 2).

8



The variation of mean square strain parameter (square of the ratio of
dynamic strain to static strain at R = 1) with compression parameter is shown
in figure 10. The general trend agrees well with predicted results from the -
single-mode formula (fig. 4) and the points of maximum responses are near the
curve for static values. -However, there is a large discrepancy between the
experimental results and theoretical prediction for an excitation level of
a=6, ﬁhich indicates that tﬁe single-mode representation used in the
analysis over-predicts the stiffness of the buckled plate. More modes may be
required to represent the deformation pattern and give a lower overall
stiffness value. |

CONCLUSIONS

A simple formula was derived for the transverse load-displacement
relationship of a plate under in-plane compression and compared with results
from experiment using electromagnetic excitation method on an aluminum plate
with postbuckling deflection. The comparison shows that the simple formula
predicts the general trend of the highly nonlinear behavior of snap-through
motion under dynamic excitation. The general characteristics of snathhrough

motion are:

(1) The mean position of the oscillation is zero;

(2) The r.m.s displacement value is approximately equal to the static
equilibrium value of the plate when snap—-through motion is just
initiated;

(3) Snap-through motion is most readily excited by low-frequency
excitation; and

(4) For a given random excitation level, the maximum response is found in
the postbuckling configuration when the excitation is just sufficient

for persistent snap-through motion.



The identification of the nonlinear characteristics found in post-buckled
plates should be very helpful in studying the corresponding characteristics in

other curved plates such as cylindrical panels.
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APPENDIX I
Derivation of Single-Mode Formula
For Any Plate Under Compression
The starting point is the Von Karman equations of large deflection of
plates. The tranverse eqﬁflibrium equation and the in-plane comptability

equation can be expressed, respectively, as

4 32 a2 a2
DV'w=h+t 6 “¥F4r0 Z¥ 4ot .a._.'g_ (A-1)
X 3x2 y 8y2 Xy 9dxdy
and
2 2 2 2
1 w ) w Oy
V() -5 = (4-2)
x~ 9y
where
o =£F_‘ g -.3_2.}; T :—azF
X ayz >y 3x2 > Xy dx oy

F = Airy stress function

% Oy, Txy = in-plane stresses

w = transverse displacement

D = plate flexural stiffness = Et3/12(1—V2)
E = modulus of elasticity

t = plate thickness

V = Poisson's ratio

h = transverse load per unit area, i.e. the pressure.

The steps are the same as in the Rayleigh-Ritz method described in reference 4

and summarized as follows:

11



1.

12

Transverse Displacement:

w(x,y) = tQd(x)¥(y) (A-3)
where Q 1is the modal displacement coefficient
$(x) ¥(y) is the buckling mode shape function.

The corresponding modal force coefficient, P, is

b a
t [ [ hex,y) 6(x) ¥(y) dxdy .
0 O ;

Stress Function: substituting w from (A-3) into (A-2),

1 2 1 2
4>i(x) V. (y) -3 Px -3 Py (A-4)

F=ft2 QCJ )¢ s

14 1

where

¢i(x), ¢j(y) are higher order functions related to ¢(x), ¥(y),

respectively, fij depends on 1, (details in ref. 4); and

P P, are mean compressive stresses in the x and y direction.

X 'y

Mean Compressive Stresses: for the edge displacement

a g o] 132

u= é [(F-vD -3 G ax (A-5)

From (A~4) and (A-5),
E 2

P =P - E;::EY ny 0 (A-6)

where
E u
poaE (),

U (1-v?)

P, 1is the mean compressive stress due to edge shortening if the plate

is flat and C,, 1s a constant related to $(x), V(¥).

y
Similarly, with edge displacement in y direction being zero,

2
P =Vp -E C -
g = VP X (A7)

Cy is a constant related to V(y).



4.

6.

In-plane Strain Energy:

b a , 2. 2 2
=/ J 5 [ax_+ oy - 2v oIyt 2(1 +v) Ty ] dxdy

From (A-4), (Ar6) and (A-8),

- I (P - ZVP P ) + Etab eQ

where e 1s a constant related to fgj 1in (A-4).

Bending Strain Energy:

b a 2 2.2

Dt 9w °w
v.=>= [ [ (5+=5) dxdy
b2 o o axz ay2

From (A-3) and (A-10),
2
v, = Q" d

where d 1is a constant related to ¢(x), ¥(y).

Linear Static Equilibrium Eqpafion:

8Vb

-—— = P

3Q

(A-8)

(A-9)

(A-10)

(A-11)

This equation applies for flat plate with small value of Q, for which

Ve can be neglected.

Substituting (A-9) into the above equation,

2DdQ = P

defining K = 2Dd, the linear modal equilibrium equation is obtained.

KQ =P

K 1is thus the linear modal stiffness.

(A-12)

13



7. Nonlinear Static Equilibrium Equation:

3(Ve + Vb)

) =P (A-13)

Substituting from steps 4 and 5 and rearranging.

Cx 2 2y Etadb .2 Putabcgz
Q[(Ze+(——z—l_v2)+cy)DdQ- T+ 1]ma =P (a-14)
Dd
Substituting tabC = Pc
Xy

2Dd = K, K 1is the linear modal stiffness from (A-12).

c 2
2, Etab _ 1
(29"‘(1—%) +c.”) i)

%

the equation (A-14) becomes

2 P
Q [Q__E - (%2_1)]1(=p (A-15)
Qp c

2
This is the nonlinear modal equilibrium equation. Q2/Qp is the effect

of large displacement, Py/P. 1is the effect of compression.

u P
Defining 5 L =-p , and 52 =

j . B
} (1 - ) 2 ¢ c c

cl:

, substituting q=Q/Qp, p = P/KQP,

The general nondimensional equation is obtained by dividing (A-15) by
KQP.

q3 _(u/uc - 1) q = P (A-16)

Putting p=0 for loading with in-plane compression only,
P

| For §‘i<1(3—< 1), q=Q=0 - (A-17)
(o4 C

14



8.

9.

P

P 2
_u u Q . (b
c c Qp c

or ¢ = (-- D (a-18)
Cc

From the above it can be seen that P, and u. are the critical mean
compressive stresses and edge shortening respectively, thus when

u
o 2 Q Qp or q 1 (A-19)

Therefore, Qp is the value of Q when u/u¢ = 2

Kinetic Energy

1 b a 2
Vo =3 et [ ] w dx dy (A-20)
o o
where p 1is the density.
Substituting (A-3) to (A-20)
1,22
VT.= E'MQ (A-21)

32 2
where M = ot~ [ [ ¢"(x) ¢"(y) dx dy M is the modal mass.
oo

Lagrangian Equation for Linear Vibration

v v
b 9 T

—_—— e — = P (A-22)
aQ ot 34

Using results from (A-12), (A-20), the equation of motion is obtained,

KQ + MQ =P (A-23)
The natural linear circular frequency of the flat configuration is thus
given by

@ = ’/M (A-24)

15



10.

16

The modal mass M can be written in terms of Q

M= (A-25)
Y
Lagrangian Equation for Nonlinear Vibration
AV + V) N
e b 9 T
—_— +— —— =P (A-26
S % N )

using results from (A-15) and (A-23) the modal equation of motion is
obtained,
2 P
[9—-2--—‘1—1]KQ+M6'=P (A-27)
P
Qp c

Dividing both sides by KQp and using results from (A-16) and (A-25), the

nondimensional equation of motion is obtained,
3 1 * e
q -Rq+—n'2-q =p (A-28)

The damping effect can be similarly included by dividing the modal damping

force 2M;96 (z is the modal damping coefficient) by KQp» which gives

2 .

-55 q. Thus the nondimensional equation of motion can be written as
UL q3 - Rqg =p (A-29)
92 Q



1.

APPENDIX II

Derivation of Nonlinear Acoustic Response Using

Equivalent Linearization

Flat Plate

The linear equation of motion for the flat plate is
1 q
o2

The mean square value of q, <q2>, due to white noise excitation with

+25q+q=p (B-1)

spectral density Spp is given by <q2> = ——Z%Rza, where @ is a

nondimensional excitation parameter.

Postbuckled Plate without Snap—Through Motion

The nonlinear equation of motion for the postbuckled plate is

| A 3_ 2
9—2-q+2§q+(q q.) =P (B-2)

Substituting q = q, + 4q into equation (B-2), (Aq is the dynamic

displacement around the static value qo), the equation become
1 oo L ,.* 3 2 2
—5 8q + 25 8g+ (8 +307q + 28qq ) = p (B-3)
Q

The equivalent linear equation is

Loag"+ 235 8q +k8q=p (B-4)
Q2 9

3 2 2
3(Aq” + 3Aq"q  + 24qq )
where k = T
q

-3 <&g> + 2qi

17
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Thus from eq. (B-4)

<Aq2> = ﬂﬂsﬂ = o (B-S)
4Tk 2 2 .
34> + 2qo

Solving eq. (B-5) for <Aq2>

’

1
<> = [-qf, + (qi + 3a)7] /3 (B-6)

Postbuckled Plate with Snap-Through Motion

The mean position of q, is zero, thus equation (B-2) is used directly and

the equivalent linear equation is

1 e ; [
¥q+2§q+kq-p (B-7)
3 3
3(q” - q.9) 2 2
where k= B R = 3{q"> - q,
From eq. (3‘7)‘
9 L 9] a
Q> =P = - (B-8)
4Tk 2 2
343> -¢q
0
Solving eq. (B-8) for <q2>
@ = [+ (a* +12 a)'Fe (3-9)
The Excitation Level for Sﬁap—Through Motion
2 2
For (B-9) to be valid, <q > Z_qo so that most of the oscillation consist

of complete snap-through motion (the r.me.s. of which is approximately
2 2. 2
qos as shown in fig. 2). By substituting <q >"from (B-9) to <q >> q,

a > 2 qi is obtained as the condition for persistent snap-through motion.



If <q2> <1/3 qi, the oscillation rarely gets into the region- of
negative stiffness (between A and B in fig. 1), there is no snap-through

motion. By substituting-<q2> from (B-6) to <q2> <1/3 qi, we obtain

a < 0,45 qz‘is obtained as the condition for no snap-through motion.

19
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